PC-Cluster-Based Real-Time Simulation of an 8-synchronous machine network with HVDC link using RT-LAB and TestDrive

Publication date : Jun 2007
Paper File : 2007_ipst_dualkundurhvdc_dufour.pdf



Share this document:

Author(s)

Vincent Lapointe, Loic Schoen, Jean-Nicolas Paquin, Jean Bélanger, Christian Dufour,

Abstract

In this paper, we detail the real-time simulation results of a medium-sized network composed of 8 synchronous machines and an HVDC link. The model is composed of two Kundur-like 4 machines networks connected together with a 12-pulse HVDC link. The complete network is modeled with SimPowerSystems with ARTEMIS real-time plug-in and is simulated in real-time on a RT-LAB InfiniBand PC-cluster composed of 3 dual-CPU dual-core Opteron PCs. The network model includes the HVDC control and protection systems as well as the synchronous machine regulators and power stabilizers. It also includes typical fault simulation capability like HVDC DC faults, thyristor misfires and AC faults. This model is excellent to study the complex interactions between an HVDC link and AC network under normal and transient conditions. The real-time simulation is controlled and monitored with a TestDrive interface from Opal-RT. This interface, based on LabView, permits easy monitoring and control of the complete system and enables Python-based scripting for automated tests. The proposed simulator can be interfaced with external equipments and controllers by direct reconfiguration of a FPGA I/O card with Xilinx System Generator blockset.